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Abstract. Breathing rates can be used to verify the human presence
and disclose a person’s physiological status. Many studies have demon-
strated success in applying channel state information (CSI) to infer
breathing rates. Due to the invisibility of radio signals, the ubiquitous
deployment of wireless infrastructures, and the elimination of the line-of-
sight (LOS) requirement, such wireless inference techniques can surrep-
titiously work and violate user privacy. However, little research has been
conducted specifically in mitigating misuse of those techniques. In this
paper, we discover a new type of proactive countermeasures against all
existing CSI-based vital signs inference techniques. Specifically, we set up
ambush locations with carefully designed wireless signals, where eaves-
droppers infer a fake breathing rate specified by the transmitter. The
true breathing rate is thus protected. Experimental results on software-
defined radio platforms show with the proposed defenses, the eavesdrop-
per is no longer able to infer breathing rates accurately using CSI, and
would be fooled by a fake one crafted by the transmitter instead.

Keywords: Breathing rate inference · Deceptive communication · Anti-
eavesdropping · Channel state information.

1 Introduction

Vital signs inference via wireless signals has drawn increasing attention because
of the ubiquitous deployment of wireless infrastructures and the elimination
of body contact with devices [1,3,10,28,29,38,36,41,62,64,56,57]. With such a
technique, an eavesdropper can stealthily set up a wireless receiver on one side
of the user to passively collect the signals emitted by a wireless Access Point
(AP) which is on the other side of the user. The respiration-induced chest and
stomach fluctuation may cause subtle disturbances in the received signals, which
can be analyzed by the eavesdropper to learn sensitive vital signs.

The popularity of such techniques also brings privacy concerns as vital signs
often contain sensitive information related to the state of personal essential body
function [1,22,36,38,60]. Generally, the normal breathing rate for an adult at rest
is 12 to 20 breaths per minute (bpm). Rapid, shallow breathing is often related
to pulmonary diseases [11], hypertension or hyperthyroidism [7]; slow breath-
ing may be caused by heart problems or drug overdose [20]; shortness of breath
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can be a symptom of diseases such as asthma or pneumonia [53]; sleep apnea
is often associated with cardiovascular diseases like stroke [22]. The disclosure
of such health information can cause serious consequences such as employment
discrimination based on health status [32], and a company’s stock plummeting
due to its CEO’s health concerns [16,15]. Except for health information, there
are also extensive research efforts that detect breathing for user presence iden-
tification [61,43,39,55], which can result in serious security issues. An adversary
(e.g., a burglary) can infer whether users are at home or not by eavesdropping
on wireless signals and then may target rooms without the user’s presence to
commit crimes to reduce the chance of getting caught.

Though research is booming in vital signs inference through wireless signals,
there are few research efforts discussing corresponding countermeasures. Tradi-
tional anti-eavesdropping methods usually take the following two defenses: (1)
Cryptographic key based: by encrypting transmitted messages between legitimate
parties [48], an eavesdropper without the secret key cannot successfully decode
the received message; and (2) Friendly jamming based: an ally jammer actively
sends jamming signals (e.g., [26,47]) which interrupt the eavesdropping while the
receiver can decode messages by canceling the impact of the inference signals.
With either mechanism, the eavesdropper would capture encrypted or disrupted
signals, which are often random and meaningless. Though the eavesdropper may
not get the correct wireless signals, the unintelligibility of those signals indi-
cates to her that her eavesdropping fails. She may thus make further efforts to
break the wireless communication. For example, an eavesdropper may attempt
to steal the secret key via social engineering methods (e.g., [31]) or side-channel
attacks (e.g., [23]). Also, it has been shown that an attacker equipped with mul-
tiple antennas is able to separate the message from the jamming signals [50]. Due
to the importance of health privacy, a more effective defense is thus much-needed
to prevent wireless vital signs eavesdropping.

Orthogonal frequency-division multiplexing (OFDM) is widely used in mod-
ern wireless communication systems (e.g., 802.11a/g/n/ac/ad) with multiple
subcarrier frequencies to encode a packet. The minute wireless signal distur-
bance caused by chest and stomach fluctuation can be captured by received
signal strength (RSS) or channel state information (CSI). RSS only provides the
average power in a received radio signal over the whole channel bandwidth, while
CSI represents how the wireless channel impacts the radio signal that propagates
through it (e.g., amplitude attenuation and phase shift). CSI offers fine-grained
channel information, consisting of subcarrier-level information. As a result, CSI
is more sensitive to breathing and has shown the best performance in inferring
breathing rate compared with other wireless techniques [28].

What if we actively feed the eavesdropper with a meaningful but bogus
breathing rate? When the eavesdropper is misled by the fake breathing rate,
she would not take further methods to compromise the true one. In this paper,
we thus develop a novel scheme against CSI-based vital signs inference tech-
niques. Specifically, we set up an ambush location, choose a fake breathing rate,
and convert it into a fake CSI. The transmitter then delivers the converted CSI
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Fig. 1: Creating a fake (sensitive or insensitive) CSI.

to the ambush location by manipulating the transmitted wireless signals. As a
result, the eavesdropper at the ambush location would infer the fake breathing
rate with the estimated CSI.

Generally, as the reflected and line-of-sight (LOS) signals interfere construc-
tively or destructively, a receiver may observe enhanced or weakened signals.
Such effects may vary for different subcarriers, which can be categorized into
two groups: sensitive and insensitive. With respiration-induced body movement,
sensitive subcarriers enable the receiver to observe large amplitudes (or vari-
ances), while insensitive subcarriers rarely show correlated fluctuations. Thus,
the breathing rate can be determined via observations of sensitive subcarriers.

We give an example to illustrate our idea. Without loss of generality, we uti-
lize a single subcarrier for discussion. For OFDM systems, a transmitter sends
a publicly known pseudo noise sequence Xi(t), and the receiver estimates the
channel frequency response Hi(t) (i.e., subcarrier CSI) from the received, dis-

torted copy Yi(t), i.e., Hi(t) = Yi(t)
Xi(t)

[25,12]. If no defense is enforced, as shown

in Figure 1a, the eavesdropper (malicious receiver) can obtain the real CSI for
the sensitive ith subcarrier between itself and the AP, denoted with Hs

i (t), which
enables her to derive the breathing rate of the target user.

If there is no breathing activity, as shown in Figure 1b, the ith subcarrier
should be insensitive and the true CSI is denoted with His

i (t). However, the
AP multiples the signal Xi(t) with a coefficient Hs

i (t)/His
i (t), and sends the

resultant signal, which also goes through the real wireless channel. Consequently,
the received signal becomes Xi(t) ·Hs

i (t)/His
i (t) ·His

i (t)=Xi(t)H
s
i (t), and thus

the eavesdropper obtains an estimated subcarrier CSI Hs
i (t) (sensitive), with

which the breath rate specified by the transmitter can be extracted.
Now consider the scenario in Figure 1c: the transmitter aims to hide the

user’s true breathing rate. Thus, it multiples the signal Xi(t) with a coefficient
His
i (t)/Hs

i (t). As a result, the eavesdropper obtains Xi(t)·His
i (t)/Hs

i (t)·Hs
i (t)=

Xi(t)H
is
i (t). The calculated subcarrier CSI then becomes His

i (t) (insensitive),
causing failure of inferring the true breathing rate.
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Fig. 2: Demonstration of Fresnel Zones.

Our real-world experimental results show the proposed defenses can fool an
eavesdropper into believing any desired breathing rate with an error of less than
1.2 bpm when the user lies on a bed in a bedroom and 0.9 bpm when the user sits
in a chair in an office room. We summarize our main contributions as follows:

– To the best of our knowledge, we are the first to propose a deceptive approach
to defend against wireless vital signs inference attacks.

– By reverse engineering existing CSI-based breathing rate inference tech-
niques, we design a customized scheme to convert a chosen breathing rate
into a fake CSI. We also develop methods to enable the eavesdropper to
estimate the fake CSI and thus attain the specified breathing rate.

– We implement real-world prototypes of both existing CSI-based breathing
rate inference and the proposed defense schemes. We experiment on top of
them to examine the impact of the defenses.

2 Preliminaries

In this section, we impart preliminary knowledge about the Fresnel Zone model
and the general method used by existing work using CSI to infer breathing rates.

2.1 Fresnel Zone

In the context of wireless signal propagation, Fresnel Zones refer to concentric
ellipses with the transmitter (Tx) and receiver (Rx) at two focal points, and
denote regions of different wireless signal propagation strengths between the
pair of communicators, as shown in Figure 2. For a given radio wavelength λ,
each ellipse can be constructed by ensuring

|Tx, Un|+ |Rx, Un| − |Tx,Rx| = nλ/2, (1)

where Un is a point in the nth ellipse, and |u, v| denotes the Euclidean distance
between two points u and v. The innermost ellipse is the first Fresnel Zone,
representing the region where the LOS signals can pass through. The nth (when
n ≥2) Fresnel Zone is the region between the (n− 1)th and nth ellipses.

The received signal at Rx is a linear combination of reflected and LOS signals.
The distance difference ∆D (i.e., nλ/2) between the two paths generates a phase
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difference of ∆Dλ ·2π=nπ between the two signals. As the phase shift introduced
by the reflection is π [56], the total phase difference ∆φ between reflected and
LOS signals equals (n + 1)π. Thus, if n is even, we obtain ∆φ mod 2π = π,
causing the two signals to arrive at Rx to have opposite phases and destructively
interfere with each other. In contrast, we have ∆φ mod 2π= 0 if n is odd, i.e.,
both signals have the same phase and constructively interfere with each other to
form a boosted signal. The Fresnel Zone model can thus help reveal the signal
change pattern (i.e., sensitive or insensitive) in each subcarrier (with different
waveforms) caused by respiration-induced body movement [56].

2.2 CSI-based Breathing Rate Inference

Existing CSI-based breathing rate inference schemes [36,56,28] usually utilize
three steps to infer breathing rates, namely, CSI pre-processing, subcarrier se-
lection, and breathing cycle extraction. The first phase removes outliers and noise
from the CSI to improve its reliability. As discussed earlier, each subcarrier may
be sensitive or insensitive to respiration due to the constructive or destructive
interference effect of LOS and reflected signals. The second phase picks up sensi-
tive subcarriers for breathing rate inference. A sensitive subcarrier often exhibits
a sinusoidal-like periodic change pattern over time in the CSI amplitudes, which
corresponds to periodic breathing. In the third phase, the peak-to-peak time in-
terval of sinusoidal CSI amplitudes can be then extracted as the breathing cycle,
with which, the breathing rate can be calculated.

3 Attack Model and Assumptions

We consider a general scenario, where an attacker only uses a wireless receiver
to launch a breathing rate inference attack, as she has a preference to take
advantage of an existing wireless transmitter to make the attack stealthier [36].
The transmitter (i.e., defender) is benign and aims to hide true breathing rates
and inject fake ones into the eavesdropper.

We assume that the receiver (i.e., attacker) attempts to find a position that
enables her to eavesdrop on the breathing rate, which is a common strategy [4].
We borrow the idea from a long-established military tactic – ambush: set up one
or multiple ambush locations where an attacker may appear and be trapped.
We further assume that the transmitter is able to obtain actual CSI between
itself and an ambush location. This can be achieved by estimating the CSI from
wireless signals emitted by a helper node placed at the ambush location.

4 Ambush Design

4.1 Overview

To lay an ambush, the transmitter first selects an ambush location and arbi-
trarily specifies a fake breathing rate to fool the attacker entering the ambush.
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The locations where an eavesdropper may appear with the highest probabilities
can be determined via eavesdropper tracking techniques (e.g., [9]) and ambush
locations can be then deployed along the eavesdropper’s possible route.

The transmitter then enters the planning phase, which consists of two par-
allel tasks: (1) determining sensitive subcarriers; and (2) converting a specified
breathing rate into an artificial CSI. We utilize a binary decision variable αi to
indicate the sensitivity of the ith subcarrier, with 1 denoting sensitive while 0
showing insensitive. The sensitivities of all N subcarriers can be represented by
a vector α = [α1, α2, · · · , αN ]T . Since insensitive subcarriers do not contribute
to the breathing rate inference, there is no need to manipulate their CSIs.

The next phase is disturbance manipulation. For signals on sensitive subcar-
riers, the transmitter aims to make the attacker estimate the converted CSI. As
any transmitting signal has to go through the real wireless channel, the transmit-
ter then applies a module of desensitizing subcarriers to remove the real impact
of corresponding wireless sub-channels, and also crafts the artificial disturbance
on these originally sensitive subcarriers for the attacker to observe. Finally, the
transmitter combines the crafted signals on sensitive subcarriers with unchanged
signals on insensitive subcarriers and transmits the aggregated signal out.

Consequently, the attacker infers breathing rate with estimated CSI by per-
forming the general breathing rate retrieval process. Figure 3 shows the flow
chart of the proposed ambush tactic.

4.2 Planning Phase

Obtaining Subcarrier Sensitivity As shown in Figure 4, Tx, U, and Ax

denote the transmitter, the user, and an ambush location, respectively. A wireless
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signal sent by Tx travels on two paths, the LOS path and the reflection one. The
distance difference ∆d between the two paths is ∆d = dTU + dUA − dTA.

Let λi denote the wavelength of the ith subcarrier with frequency fi, i.e.,
λi = c/fi, where c is the speed of light. Correspondingly, the phase difference
∆θi (between signals arrived at Ax through the two paths) equals the sum of
the respective phase shifts caused by ∆d and the reflection phenomenon, i.e.,
∆θi = 2π∆d

λi
+ π. We perform a modulus 2π operation on ∆θi and obtain a

phase difference ∆θ′i within the range of [0, 2π), i.e., ∆θ′i = ∆θi (mod 2π).

Based on the Fresnel Zone theory [56], if ∆θ′i is close to 0 or 2π, the ith sub-
carrier is sensitive, i.e., when ∆θ′i ∈ [0, π/2) ∪ (3π/2, 2π), we obtain the binary
decision variable αi = 1. On the other hand, if ∆θ′i approaches to π, this sub-
carrier becomes insensitive, i.e., αi = 0 for ∆θ′i ∈ [π/2, 3π/2]. The relationship

between αi and ∆θ′i can be then denoted as αi = b |∆θ
′
i−π|
π/2 c, where bxc denotes

the floor function, representing the largest integer less than or equal to x.

Converting Breathing Rate to CSI Breathing rate to CSI conversion is
the process of translating a selected breathing rate into a subcarrier CSI. It has
been observed that periodic chest and stomach movement caused by respiration
would make the amplitude of CSI on a sensitive subcarrier present a sinusoidal-
like pattern over time [36,38,56]. We thus model the respiration-induced CSI
amplitude stream on a sensitive subcarrier as a sinusoidal wave.

Let fb denote the specified respiration frequency (Hz), so the corresponding
breathing rate equals 60 · fb (bpm). We then convert it into a subcarrier CSI
Wb(t), which can be then denoted with |Wb(t)|ejϕ(t), where |Wb(t)| and ϕ(t)
represent amplitude and phase, respectively. Since the phase could be distorted
due to an unknown time lag caused by the non-synchronized transmitter and
receiver [46], most studies only use the amplitude to characterize the wireless
channel [54] and extract breathing rate [36,38,56]. We also explore CSI amplitude
and refer to it as just “CSI” in the following. In terms of ϕ(t), it has no impact
on breathing rate inference and we omit it for the sake of simplicity.

With the sinusoidal model, the CSI envelope at time t can be denoted by

|Wb(t)| = a · sin(2πfbt+ β) +m+N0, (2)

where a, β, m and N0 are the amplitude, initial phase, constant shift (which
defines a mean level) of the sinusoidal wave, and the additive noise. In turn,
with such a CSI envelope, the attacker can infer the breathing rate as 60 · fb.

Formation of the Specified OFDM CSI: The specified CSI for an OFDM
system withN subcarriers can be denoted with W(t)=[W1(t),W2(t), · · · ,WN (t)].
Let S = {s1, s2, . . . , sK} and S̄ = {p1, p2, . . . , pK′} denote the sets formed by
the indexes of the sensitive and insensitive subcarriers, where K+K ′=N . For
i ∈ S, we enable Wi(t) = Wb(t); for i ∈ S̄, we have Wi(t) = Hi(t) (i.e., no
manipulation is required), where Hi(t) is the original CSI of the ith subcarrier.
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4.3 Disturbance Manipulation

The transmitter can utilize a multiply-accumulate (MAC) process to generate
desired artificial disturbance, as shown in Figure 5. Specifically, the public train-
ing sequence X(t) is encoded into N subcarrier signals by a serial-to-parallel
(S/P) converter module, represented with [X1(t), X2(t), · · · , XN (t)]T . We use J
to represent an N × 1 vector of all 1’s. Thus, after the signal separator, the orig-
inal N subcarrier signals will be divided into two groups: S(t) = diag(α) ·X(t)
and IS(t) = diag(J − α) · X(t), denoting signals on sensitive and insensitive
subcarriers, respectively, where diag(V) denotes a square diagonal matrix with
the elements of vector V on the main diagonal.

Signals on sensitive subcarriers would then go through two modules: subcar-
rier desensitization and CSI forgery. The former module with the coefficient vec-
tor C(t) = [C1(t), C2(t), · · · , CN (t)] aims to cancel the original channel impact,
so that the real respiration-induced channel disturbance (i.e., the real breath-
ing rate) can be hidden for the attacker. Accordingly, we have Ci(t) =H−1

i (t)
if the ith subcarrier is sensitive, i.e., i ∈ S, and set Ci(t) = 0 for i ∈ S̄. The
latter module with a coefficient vector D(t) = [D1(t), D2(t), · · · , DN (t)] would
add the effect of the artificial CSI for the attacker to estimate, where the forged
subcarrier CSI Di(t) = Wi(t) if i ∈S and we set Di(t) = 0 for i ∈S̄.

Finally, signals on originally sensitive and insensitive subcarriers are con-
catenated through a parallel-to-serial (P/S) converter module to form OFDM
symbols to send via the realistic wireless channel. The resulting transmitting
signal Xm(t) can be represented by

Xm(t)=diag(D(t))·diag(C(t))·S(t)+ IS(t). (3)

Let H(t)= [H1(t),· · ·, HN (t)]T denote the true OFDM CSI. The received signal
at the attacker thus becomes Rm(t) = diag(Xm(t)) ·H(t), where we omit the
noise term for the sake of simplicity. The attacker estimates CSI with the received
signal and the public training sequence, i.e., Rm(t) = diag(X(t)) · Ĥ(t), where
Ĥ(t)=[Ĥ1(t), · · · , ĤN (t)]T represents the estimated CSI. Consequently, we have

Ĥi(t)=αi ·
Xi(t)Ci(t)Di(t)

Xi(t)
·Hi(t)+(1−αi)·Hi(t)

=αi ·Di(t)+(1−αi)·Hi(t)=Wi(t).

(4)
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This demonstrates that with the disturbance manipulation, when the ith sub-
carrier is sensitive, the transmitter is able to make the attacker obtain a fake
subcarrier CSI Wi(t) specified by itself in the planning phase. Meanwhile, if
the ith subcarrier is insensitive, it is still observed as insensitive, i.e., the corre-
sponding estimated subcarrier CSI equals the real value Hi(t). This is because
the transmitter does not manipulate signals on insensitive subcarriers.

4.4 Breathing Rate Retrieval

CSI Pre-processing CSI pre-processing, consisting of outlier removal and
noise reduction, aims to make the collected CSI reliable. The imperfect CSI can
be caused by non-respiratory environmental change or hardware imperfections.

Hampel filter is a classical technique to remove outliers (i.e., samples that sig-
nificantly differ from neighboring ones) in a given series [13,38]. As the collected
CSI may have abrupt changes that are not caused by respiration, a Hampel filter
is enforced to remove those outliers. It is observed that the CSI variations caused
by the chest and stomach movement usually lie at the low end of the spectrum.
Thus, we further adopt the moving average filter, which is optimal for reducing
high-frequency noise while retaining a sharp step response [49]. Figure 6 illus-
trates an example of CSI pre-processing. It can be seen that the outliers and
high-frequency noise are effectively removed.

Subcarrier Selection Empirically, the CSI variance of a sensitive subcarrier
is usually more than one order of magnitude larger than that of an insensitive
subcarrier. This observation implies a threshold-based approach to distinguish
the two types of subcarriers. Specifically, when there is no breathing activity, the
average CSI variance σ2 across all subcarriers can be measured, called reference
variance, which will be then utilized as the threshold to determine the sensitivity
of each subcarrier. Let v2

i denote the CSI variance for the ith subcarrier. If
log10(v2

i /σ
2)< 1 holds, we regard that the variance is caused by noise and the

subcarrier is insensitive; otherwise, this subcarrier is sensitive. If CSI variances
on all subcarriers have the same order with the reference variance, all subcarriers
are insensitive (i.e., no breathing activity is detected).

Figure 7 plots the CSIs observed on 4 different subcarriers. In this example,
we can see that subcarrier 24 has a quite flat CSI which rarely discloses any
useful information about the breathing activity, while the CSIs of the remaining
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subcarriers show evident periodical fluctuations. Accordingly, we can determine
that subcarriers 9, 15, and 40 are sensitive, while subcarrier 24 is insensitive.

Breathing Cycle Identification The CSI on a sensitive subcarrier often shows
a sinusoidal pattern correlated with breathing activities. To obtain a breathing
cycle, we can thus compute the inter-peak interval (i.e., the time between suc-
cessive peaks) of the sinusoidal CSI.

Intuitively, the first derivative of a peak switches from positive to negative at
the peak maximum, which can be used to localize the occurrence time of each
peak. However, there may exist fake peaks caused by noise and consequently
false zero-crossings. Motivated by the fact that a person usually cannot breathe
beyond a certain frequency, a fake peak removal algorithm can be developed.
Specifically, if the calculated interval between the current peak with the previous
one is less than 60/Rmax (seconds), where Rmax (bpm) denotes the maximum
possible breathing rate, this peak will be labeled as a fake one and then removed.

Figure 8 shows all detected local peaks on 20 sensitive subcarriers during 25
seconds. The breathing rate is calculated as 12.7 bpm for this example.

Inferring Multi-user Breathing Rates For the multi-user scenario, we use
the power spectral density (PSD) [36] to identify the frequencies with strong
signal power in the frequency domain. Normally, each breathing signal from
one person contributes to one evident peak in the obtained PSD [55]. The PSD
on the ith sensitive subcarrier with L samples can be obtained by PSDi =

10 log10
|FFT (Hi)|2

L , where Hi is the vector of CSI amplitude on the ith subcarrier.
When there are two users, the two strongest peaks in the PSD would indicate

their breathing rates, as in an example shown in Figure 9. The ground truths of
two users’ breathing rates are 6.0 and 17.3 bpm (corresponding to 0.10 ad 0.29
Hz); the estimated breathing rates based on the first two strongest peaks are 6.0
and 18.0 bpm (i.e., 0.10 and 0.30 Hz), showing that the estimation of two-user
breathing rates is accurate.

4.5 From Point Ambush to Area Ambush

With more deployed ambush locations, the probability that an eavesdropper
happens to be at any of them would be higher. Meanwhile, it helps to defend
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against multiple collaborative attackers, each of which searches for opportune
eavesdropping locations.

Setting up Two Ambush Locations The transmitter with two antennas
can set up two ambush locations. Let Hsr(t) (s, r ∈ {1, 2}) denote the overall
CSI between the sth transmit antenna and the rth ambush location. The cor-
responding subcarrier sensitivity vector is represented by αsr = [α1

sr, · · · , αNsr],
which can be pre-obtained with the method proposed in Section 4.2. At each
ambush location, the received signal is the superposition of two signals, each
from a different transmit antenna. If at least one of the two subcarriers between
the respective transmit antenna and the rth ambush location is sensitive, we
regard that this overall subcarrier between the transmitter and the rth ambush
location is sensitive. Mathematically, let αr = [α1

r, · · · , αNr ] denote the resultant
subcarrier sensitivity vector of the transmitter for the rth ambush location, and
αir = αi1r ∨ αi2r. On the other hand, it may arouse suspicion of two colluding
eavesdroppers if the breathing rates they infer separately are different. Thus, the
transmitter should enable both ambush locations to observe the same breathing
rate, i.e., the manipulated CSIs at corresponding sensitive subcarriers should be
equal. If a subcarrier at either ambush location is sensitive, we then regard that
the overall subcarrier between the transmitter and the two ambush locations is
sensitive. Similarly, let α=[α1, · · · , αN ] denote the subcarrier sensitivity vector
of the transmitter for the two ambush locations, and αi = αi1 ∨ αi2.

Let W (t) denote the fake CSI which is converted with a specified breathing
rate. The transmitter aims to make the estimated CSI on sensitive subcarriers
at each eavesdropper to be equal to W (t).

As discussed in Section 4.3, the transmitting signals on sensitive subcarriers
will be first desensitized and then multiply with the forged CSI before being
sent out. In this scenario, let Hi

sr(t) denote the CSI on ith subcarrier between
the sth transmit antenna and the rth ambush location. Thus, in terms of the
coefficient vector Cs(t) = [C1

s (t), · · · , CNs (t)] for subcarrier desensitization at the
sth transmit antenna, if αi = 0 (i.e., the ith subcarrier between the transmitter
and the two ambush locations is insensitive), we set Cis(t) = 0, otherwise, we

have Ci1(t) =
Hi

21(t)−Hi
22(t)

ζi and Ci2(t) =
Hi

12(t)−Hi
11(t)

ζi , where ζi = Hi
21(t)Hi

12(t)−
Hi

22(t)Hi
11(t). Also, the coefficient vector for the CSI forgery module at each

transmit antenna is D(t) = [D1(t), · · · , DN (t)], where we set Di(t) = 0 if αi = 0
and have Di(t) = W (t) if αi = 1.

We rewrite Equation 3 and the transmitting signal Xm(t)= [X1(t),X2(t)]T

after manipulation becomes

Xm(t)=

[
diag(D(t)) · diag(C1(t)) · S(t)+IS(t)
diag(D(t)) · diag(C2(t)) · S(t)+IS(t)

]
. (5)

The transmitting signal Xm(t) would go through the realistic wireless channel.
At the ambush location side, the received signal and the public training sequence
will be then utilized to estimate CSI. Let Ŵ1(t) and Ŵ2(t) denote the estimated
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CSIs at the two ambush locations. We thus obtain

Ŵ i
r(t) = αi ·W (t) + (1− αi) · (Hi

1r(t) +Hi
2r(t)). (6)

This implies the success of setting up two ambush locations simultaneously.

General Scheme for Area Ambush The transmitter can deploy κ ambush
locations with κ antennas. We consider colluding eavesdroppers and need to
guarantee the breathing rate inferred by each eavesdropper at any ambush loca-
tion stays the same.

The sensitivity of the ith subcarrier between the sth transmit antenna and the
rth ambush location can be represented by αisr (s, r ∈ {1, 2, · · · , κ}). Meanwhile,
let αir denote the overall sensitivity of the ith subcarrier between the transmitter
and the rth ambush location, i.e., αir = αi1r ∨ αi2r · · · ∨ αiκr. Thus, in terms of
the subcarrier sensitivity vector α of the transmitter for all κ ambush locations,
we have αi = αi1 ∨ αi2 · · · ∨ αiκ. Let X(t) = [X1(t), · · · ,Xκ(t)]T denote the
manipulated signal sent by κ transmit antennas. The transmitter aims to make
the estimated CSI at each ambush location be equal to the specified fake CSI,
i.e., Ŵr(t) = W(t). Similarly, each transmit antenna utilizes the same coefficient
vector D(t) for the CSI forgery module.

Accordingly, we can then solve the manipulated signal Xm(t), and rewrite
Equation 5 as

Xm(t)=

diag(D(t))·diag(C1(t))·S(t)+IS(t)
...

diag(D(t))·diag(Cκ(t))·S(t)+IS(t)

, (7)

where Cs(t) is the coefficient vector for the subcarrier desensitization module at
the sth transmit antenna.

Equation 7 has κ unknowns (C1(t) to Cκ(t)). As the number of transmit an-
tennas equals the number of unknowns, the linear system formed by Equation 7
has a unique solution. It demonstrates when the transmitter is able to set the
coefficient vector for the subcarrier desensitization module at the sth transmit
antenna with the computed Cs(t), the goal of deploying κ simultaneous ambush
locations can be achieved.

4.6 Security Analysis

The proposed scheme is known by the eavesdropper. One concern is whether the
eavesdropper can distinguish ambush locations or even indirectly compute the
real CSI of sensitive subcarriers (to infer the true breathing rate).

Ambush Indistinguishability: With the Fresnel Zone principle, CSI-based
breathing rate inference works at certain locations, while its performance may
deteriorate greatly at other locations [10]. Thus, when the eavesdropper moves
out of the ambush location, though she cannot detect the breathing rate as
when she is at the ambush location, she is still unable to distinguish this case
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Tx

(a) Bedroom (User lies down).

Tx

(b) Office (User sits).

Fig. 10: Layout of the experimental environment.

from the normal one when the ambush scheme is not enforced. Such ambush
indistinguishability leaves the eavesdropper in a dilemma: if she believes the
inferred breathing rate, she will be deceived; instead, if she does not trust any
inferred breathing rate, her ability to eavesdropping breathing rate is lost.

Indirect Calculation: To calculate the real CSI, an eavesdropper must com-
promise the phase of distribution manipulation. As shown in Section 4.3, suppose
that the ith subcarrier is sensitive, the transmitting signal on this subcarrier can
be represented as Xm

i (t) = αiCi(t)Di(t)Xi(t)+(1−αi)Xi(t). We utilize Mi(t) =
Ci(t)Di(t) to denote the total impact of disturbance manipulation. Let Rei denote
the signal received by the eavesdropper on the ith subcarrier, and He

i (t) denote
the corresponding real subcarrier CSI between the transmitter and eavesdropper.
Thus, we have Rei = Xm

i (t)He
i (t) = aiMi(t)Xi(t)H

e
i (t) + (1− ai)Xi(t)H

e
i (t).

To learn Mi(t), the eavesdropper must learn both ai and He
i (t). However,

this imposes a strong requirement for the eavesdropper. On one hand, without
the knowledge of the accurate positions of the target user and the transmit-
ter, the eavesdropper can hardly determine the subcarrier sensitivity except by
guessing. On the other hand, the transmitter can always hide its real CSI be-
tween itself and the eavesdropper. Thus, He

i (t) is not available. Consequently,
the eavesdropper would fail to obtain Mi(t) and cannot calculate the real CSIs
of sensitive subcarriers for inferring the true breathing rate.

5 Experimental Evaluation

We implement CSI-based breathing rate inference and our proposed ambush
schemes on top of Universal Software Radio Peripheral (USRP) X310s [19], which
are equipped with SBX-120 daughterboards [18] and run GNU Radio [24] – an
open-source software toolkit.

5.1 Evaluation Setup

The prototype system includes a transmitter Tx and an eavesdropper Eve (i.e.,
malicious receiver). Each node is a USRP X310. We recruited 5 participants
and asked each to act as the target user of the inference attacks over three
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(a) Five-antenna transmitter with USRPs.

P1

P2

P3

P4

P5

(b) Ambush area.

Fig. 11: Setup for deploying an ambush area.
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(b) In the office room.
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Fig. 12: Values of ε and ε at Eve when no defense is enforced.

months.1 Also, each wore a Masimo MightySat Fingertip Pulse Oximeter [40]
with hospital-grade technology to obtain ground-truth breathing rate.

Testing Scenarios: We test two typical scenarios: (1) a bedroom, where
the user lies on a bed; and (2) an office room, where the user sits in a chair.
Figure 10 shows the ambush locations and the position of the transmitter. For
each scenario, we place Eve at 5 different ambush locations to infer the user’s
breathing rate, and the transmitter launches the proposed ambush scheme.

To deploy a trap area, as shown in Figure 11a, we use a 5-antenna transmitter,
consisting of three USRP X310s, which are connected with a host computer
through an Ethernet switch and synchronized with OctoClock-G [17]. As shown
in Figure 11b, five collaborative eavesdroppers are placed at 5 specified ambush
points on the corridor outside of the office room: one in the center and the other
four in the circle with a radius (i.e., antenna-antenna distance) of 0.75 m.

Metrics: Let r̂ denote the estimated rate.We apply the following two metrics.

– Absolute estimation error ε: the difference between true and estimated breath-
ing rates, i.e., |rgt− r̂|, where rgt is the ground truth.

– Absolute ambush error η: the difference between estimated and specified
breathing rates, i.e., |ra−r̂|, where ra is the one specified by the transmitter.

1 The study has been approved by our institution’s IRB.
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Fig. 13: Enabling Eve to obtain no breathing activity.

5.2 Breathing Rate Inference Attacks

We first verify the effectiveness of using CSI to infer breathing rates. As shown
in Figure 10, Eve is put at each ambush location in both of the two scenarios
to estimate each participant’s breathing rate, with 100 trials performed for ev-
ery estimate. Figure 12 shows the obtained absolute estimation error when the
proposed ambush scheme is not launched.

Figure 12a shows that the inference technique always achieves high accuracy
with less than 1.6 bpm of error at all locations in the bedroom. The median
absolute estimation error ranges from 0.4 to 0.6 bpm across all locations. Mean-
while, we see the value of ε on average is slightly larger at Location 2 than at
other locations. This is because Location 2 is not in the LOS of the user and
the resultant signal fading degrades the inference performance. We have similar
observations from Figure 12b. Figure 12c depicts the mean absolute estimation
errors for different users (referred to as U1∼U5). We can observe that the mean
absolute estimation error is consistently low (i.e., below 0.8 bpm) across all users
in both environments. Also, the average absolute estimation error for each user
in the office room is larger than that in the bedroom. It can be explained by the
fact that the user has less body movement irrelevant to breathing activity when
lying on the bed than when sitting in the chair. These results demonstrate con-
vincingly that an eavesdropper could utilize passively collected CSI to accurately
infer a person’s breathing rate in different scenarios.

5.3 Example Defenses

We examine three example defenses, in which we deploy the ambush location at
Location 1 shown in Figure 10a and Location 3 shown in Figure 10b.

Example 1 - Making Breath Unobservable: We first show a defense
method by hiding breathing rates, i.e., when Eve appears at the ambush location,
she would obtain a breathing rate of 0 (i.e., no breathing activity is detected).

Figure 13 plots the real CSIs between the transmitter and the ambush loca-
tion, the estimated CSIs at the ambush location, as well as the subcarrier CSI
specified by the transmitter. In both environments, the transmitter can make
Eve observe a CSI on a sensitive subcarrier significantly near to the specified
one while both greatly deviate from the true one; with the estimated CSI, Eve
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Fig. 14: Fabricating normal breath.
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Fig. 15: Making Eve obtain abnormal breath.

obtains a breathing rate of 0 though the respective true breathing rates are 15.1
and 20.8 bpm. The absolute estimation errors in the bedroom and the office room
are thus 15.1 and 20.8 bpm, while the corresponding absolute ambush errors are
both 0. Besides, the CSI of the insensitive subcarrier keeps insensitive with the
defense (we thus only focus on sensitive subcarriers in the later evaluation).

Example 2 - Fabricating Nonexistent Breath: We aim to make Eve
obtain a fake breathing rate while there is no breathing activity in both scenarios.
We specify a fake breathing rate of 6 (16) bpm for the bedroom (office) room.

As shown in Figure 14, we see the true CSI is almost flat, as there is in fact
no breathing activity, and the estimated CSI is quite consistent with the CSI
specified by the transmitter. With the estimated CSI, Eve obtains a breathing
rate of 6.4 bpm in the bedroom and 16.1 bpm in the office room. The absolute
estimation errors in the two scenarios become 6.4 and 16.1 bpm, respectively;
the respective absolute ambush errors are as small as 0.4 bpm and 0.1 bpm.

Example 3 - Falsifying Breath: We aim to hide a normal breathing rate
by making Eve observe an abnormal one. We randomly specify an abnormal
breathing rate of 40 bpm for the bedroom and 35 bpm for the office room.

Similar to the above examples, we observe from Figure 15 that the estimated
CSI is quite close to the specified CSI while it greatly differs from the true CSI in
both environments. The estimated breathing rate of Eve in the bedroom becomes
40.2 bpm, instead of the true one (i.e., 19.9 bpm) derived from the Masimo
Oximeter. In the office room, Eve obtains a breathing rate of 35.2 bpm, instead
of the ground truth (i.e., 17.0 bpm). Therefore, the absolute estimation errors
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Fig. 16: CDFs of P (ε ≤ x)
for D1.

Fig. 17: CDFs of P (ε ≤ x)
and P (η ≤ x) for D2.

Fig. 18: CDFs of P (ε ≤ x)
and P (η ≤ x) for D3.
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Fig. 19: Mean absolute estimation errors (AEE).

for the bedroom and the office room are 20.3 bpm and 18.2 bpm, respectively,
while the absolute ambush errors in these two scenarios are both just 0.2 bpm.

5.4 Overall Defense Impact

We examine the overall impact of the three defenses (numbered according to
their respective cases): (1) a user is breathing while we aim to make Eve obtain
no breathing activity; (2) no breathing activity occurs while we aim to make Eve
obtain a fake breathing rate; (3) a user is breathing while we aim to make Eve
obtain a different non-zero breathing rate. Eve estimates the breathing rate at
every ambush location. For each estimate, we perform 100 trials.

D1: We test when the user has different breathing rates in the range of 6-
27 bpm. For all trials, we find that Eve always obtains an estimated breathing
rate of 0, indicating the consistent success of the defense. Let P (εbr ≤ x) and
P (εor ≤ x) denote the empirical cumulative distribution functions (CDFs) of
the absolute estimation error εbr for the bedroom and εor for the office room.
Figure 16 shows that εbr and εor lie in the ranges of [6.6, 26.5] and [7.5, 29.6]
with probability 100%. Both demonstrate that Eve always has a significant error
in the breathing rate estimation with the proposed defense.

D2: We randomly specify a fake breathing rate within the range of 3-55
bpm in each trial. Let P (ηbr ≤ x) and P (ηor ≤ x) denote the CDFs of the
absolute ambush errors ηbr for the bedroom and ηor for the office room. As
shown in Figure 17, we observe a small η and a high ε for both environments.
For example, ηbr is less than 1.5 bpm with a probability of 95.0%, while εbr
ranges from 3.0 to 54.8 bpm and is larger than 3.1 with a probability of 98.2%.
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(a) Canceling two-user breath. (b) Creating two-user breath. (c) Comparison of ε.

Fig. 20: Extending defenses in two-user scenario.

(a) Absolute estimation error. (b) Absolute ambush error.

Fig. 21: Fabricating normal breath for a trap area.

D3: Each participant has a normal breathing rate, and the transmitter
chooses a bogus breathing rate randomly in an abnormal range (31-56 bpm).
Figure 18 shows the CDFs of the corresponding ε and η. We can see that εbr and
εor are larger than 11 bpm with probabilities of 96.2% and 99.0%, respectively.
Meanwhile, ηbr is always less than 1.2 bpm, and ηor is always less than 0.9 bpm.

Figures 19a and 19b show the mean value of ε across all locations in both
environments when the proposed defenses are employed. We observe that ε stays
consistently high at all ambush locations for both environments. Compared with
no defense, all defenses can significantly increase ε at Eve.

5.5 Two-user Scenario

First, we aim to make two persons’ breathing unobservable (referred to as D1).
We consider the scenario when two participants are in the office room simulta-
neously. As shown in Figure 20a, the estimated CSI is quite close to the specified
one while both deviate from the true CSI. Consequently, Eve obtains a breathing
rate of 0 though the true breathing rates of the two users are 6.0 and 10.0 bpm,
respectively. Second, we aim to make Eve observe two specified breathing rates
(16 and 22 bpm) when there is no breathing activity (referred to as D2). As
shown in Figure 20b, though the true CSI is almost flat, indicating no person
in the room, the estimated CSI and the specified one are alike, leading Eve to
obtain two-person breathing rates of 16.0 and 22.1 bpm.

We repeat the above two experiments 40 times. For comparison, we also
perform 40 attempts of inferring two-person breathing rates when no defense
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is applied (this case is denoted with ND). Figure 20c presents the absolute
estimation errors (ε) for the cases with two real or fake users (U1 and U2).
Without the defenses, the mean value of ε is quite small (around 0.8 bpm);
while it is significantly increased (within the range of 12.6-17.2 bpm) with the
proposed defenses (D1 and D2). Also, for D1, the mean values of the absolute
ambush error η for the two users both equal about 0, while for D2, they are
0.1 and 0.4 bpm. These results convincingly show the proposed scheme can
successfully mislead Eve with specified breathing rates for the two-user scenario.

5.6 Trap Area Evaluation

We aim to generate fake breath rates in the trap area consisting of five ambush
points (referred to as P1∼P5), as shown in Figure 11b. We choose a breathing
rate of 20 bpm when the target room has no breathing activity. We perform 10
trials of deploying a trap area.

Figure 21a shows that the absolute estimation errors at all ambush points are
consistently large (close to 20 bpm). Figure 21b demonstrates that the absolute
ambush errors at all ambush points are quite small, with the mean value ranging
from 0.03 to 0.05 bpm across all ambush points. These results demonstrate
that the proposed scheme can simultaneously deploy multiple ambush points to
mislead collaborative eavesdroppers (or simply increase the probability to trap
a single eavesdropper) with fake breathing rates.

6 Related Work

Generally, existing wireless breathing rate inference techniques fall into the fol-
lowing categories:

Ultra-wideband (UWB) radar based: The expansion and contraction of the
chest cavity may create changes in the multipath profile of the transmitting sig-
nal, which can be captured with UWB impulse responses for breathing rate es-
timation [52,45,28]. UWB transmissions, however, spread over a large frequency
bandwidth [21]. Also, the receiver structure for UWB is highly complex [33].

Doppler radar based: Doppler radar systems have been proposed to achieve
breathing detection [34,14,6,35,44]. According to the Doppler theory, a target
with time-varying movement but zero net velocity will reflect the signal, whose
phase is modulated in proportion to the displacement of the target [8]. A sta-
tionary person’s chest and stomach can be thus regarded as a target. However,
such Doppler radar based techniques suffer from the null point problem, which
significantly degrades the measurement accuracy [63,27,35].

Frequency Modulated Continuous Wave (FMCW) radar based: An FMCW
radar has also been utilized for breathing rate inference [3,51,5]. The breathing-
induced body movement changes the signal reflection time. By analyzing such
changes, the breathing rate can be extracted. However, high resolution (i.e.,
the minimum measurable change) requires a large swept bandwidth B as the
resolution equals C

2B [2], where C is the speed of light.
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RSS-based: The changes in received signal strength (RSS) on wireless links
have been successful in estimating breathing rate [30,42,41,1]. For example, [1]
puts a mobile device on the chest to collect RSS for inferring breathing rates.
However, those methods are workable only when the target user stays close to
the receiver. As an eavesdropper usually has a preference to be located far away
to avoid being discovered, such RSS-based methods are not optimal.

CSI-based: RSS represents coarse channel information while CSI represents
fine-grained channel information, consisting of subcarrier-level information. As
a result, CSI is more sensitive to detecting breathing activity and the CSI-based
approaches are able to capture breathing from a distance. Accordingly, CSI-based
breathing rate inference has drawn increasing attention [37,38,58,36,56,59,65]. In
particular, a recent empirical study [28] reveals CSI provides the most robust
estimates of breathing rate compared with UWB radar or RSS.

7 Conclusion

Wireless signal has demonstrated exceptional capability to detect breathing ac-
tivity, which introduces a new threat to the security of personal health infor-
mation. To address this issue, we design an ambush-based strategy by actively
deploying ambush locations and feeding eavesdroppers who move to those am-
bush locations with fake breathing rates. This scheme enables the transmitter to
encode the specified fake breathing rate into CSI, and then utilize disturbance
manipulation to deliver it to the eavesdropper. We conduct an extensive real-
world evaluation on the USRP X310 platform. Experimental results in different
scenarios consistently demonstrate the effectiveness of the proposed defenses.
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https://money.usnews.com/investing/stock-market-news/articles/2017-12-15/csx-corporation-stock-plummets-on-ceos-health-concerns
https://money.usnews.com/investing/stock-market-news/articles/2017-12-15/csx-corporation-stock-plummets-on-ceos-health-concerns
https://www.cnbc.com/id/49115208
https://www.cnbc.com/id/49115208
https://www.ettus.com/all-products/sbx120/
https://www.ettus.com/all-products/sbx120/
https://www.ettus.com/all-products/x310-kit/
https://www.ettus.com/all-products/x310-kit/


22 Q. He et al.

T., Handschuh, H. (eds.) Cryptographic Hardware and Embedded Systems – CHES
2015. pp. 207–228. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

24. GNU Radio project: GNU Radio - the free & open source radio ecosystem (2022),
https://www.gnuradio.org

25. Goldsmith, A.: Wireless Communications. Cambridge University Press, New York,
NY, USA (2005)

26. Gollakota, S., Katabi, D.: Physical layer wireless security made fast and channel
independent. In: 2011 Proc. IEEE INFOCOM. pp. 1125–1133 (April 2011)

27. Gu, C.: Short-range noncontact sensors for healthcare and other emerging appli-
cations: A review. Sensors 16(8), 1169 (2016)

28. Hillyard, P., Luong, A., Abrar, A.S., Patwari, N., Sundar, K., Farney, R., Burch, J.,
Porucznik, C., Pollard, S.H.: Experience: Cross-technology radio respiratory mon-
itoring performance study. In: Proc. of the 24th Annual International Conference
on Mobile Computing and Networking. p. 487–496. MobiCom ’18, Association for
Computing Machinery, New York, NY, USA (2018)

29. Jia, W., Peng, H., Ruan, N., Tang, Z., Zhao, W.: WiFind: Driver fatigue detection
with fine-grained wi-fi signal features. IEEE Transactions on Big Data 6(2), 269–
282 (2020)
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